
System Call

How OS launches a program

Fundamentals of an OS

Operating System

System Call

How OS launches a program

A good example can be reference at section 6.5 of Structured Computer Organization.

Fundamentally, an OS provides services:

File services (open, read, write, close etc.)

Networking services (open, read, write, close internet socket)

Berkeley socket interface

Multi-tasking services

Creating multiple threads

Dictating priorities for threads

An interrupt is an asynchronous function call that can interrupt normal flow of a program.

Fundamentals of an OS

What is an OS?

Interrupt

https://csc-knu.github.io/sys-prog/books/Andrew S. Tanenbaum - Structured Computer Organization.pdf

// HW and OS work together to invoke this function

// whenver a keyboard key is pressed

// Regardless of where you are at your_program()

// this function can be invoked ascynhronously

void interrupt_keyboard(void) {

}

// Thread that never exits

// This calls all the sub-functions synchronously

void your_program(void) {

 while (forever) {

 check_for_brake_pedal();

 actuate_brakes();

 }}

Kernel vs. User Space
// OS use "SWI" or "Software Interrupt"

// "Software Interrupt" really means a "Deliberate Interrupt request to the HW"

void deliberate_interrupt(void) {

}

//

void your_program(void) {

 while (forever) {

 int file = open("file.txt");

 }

}

// Psuedo-code for open

// This is what the open function looks like inside the OS

void open(filename) {

 R4 = open_request_number;

 R5 = filename

 SWI

}

Virtual memory is not purely virtual memory, it is virtual memory addresses that maps to real and

physical hardware memory.

Virtual Memory

POSIX Interface

