Operating System

® System Call
®* How OS launches a program
* Fundamentals of an OS

System Call

Your_program.exe

Your application Your code

o " Compiler provided code
write(id) open("fuser/preet.ixt™) ie- <stdio. >
Kernel
¥ ¥ Code
o5_write(id) os_open...)
\—>| exFAT | [FaTaz |
| Enmcryption | | NTFS |
read_disk(
sector#f,
Lidar Driver SSD Driver 5D Card memary,
Driver memory_size
v
F
Serial Port Lidar sensor 85D HW SD HW
MOV R7, 4 SWI #0 “interrupted from your program” [/i' MOV RO, #0 User
™ made
«—Ins—»4—1ns
os_write() | filesystem() disk_write() kernel
mode

F 3

1us

Y

How OS launches a program

terminal intercepts terminal tells the OS setup expected RAM
keystrokes to start a program values
¥ h ¥
terminal waits for 035 will read from the _ _
<enter> key disk(S5D) and finally enter main)
transfer the contents
to RAM
k
terminal finds an ¥
executable that Allocates RAM for the
matches the name mkdir program
“mkdir’

Fundamentals of an OS

What i1s an OS?

A good example can be reference at section 6.5 of Structured Computer Organization.
Fundamentally, an OS provides services:

* File services (open, read, write, close etc.)

* Networking services (open, read, write, close internet socket)
© Berkeley socket interface

® Multi-tasking services
© Creating multiple threads
© Dictating priorities for threads

Interrupt

An interrupt is an asynchronous function call that can interrupt normal flow of a program.

https://csc-knu.github.io/sys-prog/books/Andrew S. Tanenbaum - Structured Computer Organization.pdf

// HW and 0S work together to invoke this function
// whenver a keyboard key is pressed
// Regardless of where you are at your program()
// this function can be invoked ascynhronously
void interrupt keyboard(void) {
}
// Thread that never exits
// This calls all the sub-functions synchronously
void your program(void) {
while (forever) {
check for brake pedal();
actuate brakes();

}}

Kernel vs. User Space

// 0S use "SWI" or "Software Interrupt"
// "Software Interrupt" really means a "Deliberate Interrupt request to the HW"
void deliberate interrupt(void) {
}
//
void your program(void) {
while (forever) {

int file = open("file.txt");

}

// Psuedo-code for open
// This is what the open function looks like inside the 0S
void open(filename) {

R4 = open_request number;

R5 = filename

SWI

Virtual Memory

Virtual memory is not purely virtual memory, it is virtual memory addresses that maps to real and
physical hardware memory.

POSIX Interface

