
C++ 11 standard solved a major safety problem with the language: Managing memory

Creating memory
Deleting memory
Managing who owns memory and how many owners are there?

Memory becomes difficult to manage when you give the pointers or references away. Here is an example.

Smart Pointers

Example

Problematic code

// Interface for an internet socket API

class socket_i {

public:

 virtual void send() = 0;

 virtual void recv() = 0;

 virtual ~socket_i() {}

};

// Child class that implements an interface

class socket : public socket_i {

public:

 void send() override {

 }

 void recv() override {

 }

};

// An HTTP library that uses a socket interface to communicate

class http {

public:

One of the problems can be simplified to this:

The partially corrected version creates a new memory reference, and it leaves it up to the consumer of the
code to actually delete the object. This is just one of the issues: memory management problem. Because you
are relying on the user of the code to delete your memory, it creates traps in your code.

 http(socket_i *sock) : m_socket(sock) {

 }

private:

 socket_i *m_socket;

};

// Multiple problems with this code

http* create_http() {

 socket s;

 http http_obj(&s);

 return http_obj;

}

int main(void) {

 http* http_obj = create_http();}

int* get() {

 int x;

 return &x;

}

void problem() {

 int* pointer = get();

 *pointer = 123;}

Fixed Version 1

// Let us partially fix our code

http* create_http() {

 socket s;

 // Let us create new memory which will not go out of scope

 // even when this function exits

 // BUT:

 // We have now created memory management problem:

Let us introduce the concept of using a unique pointer such that we do not have to worry about deleting it.

The unique_ptr is also special because it will force you to maintain "one owner".

If we continue in our example, we will notice that there is still a fundamental flaw which is that the socket that
was created would go out of scope, and the http class would then end up using a reference to memory that no
longer is alive (no longer in scope).

 // ie:

 // - Who deletes this memory?

 // - When do they do it?

 // - Can you ensure that they delete it?

 http * http_obj = new http(&s);

 return http_obj;

}

int main(void) {

 http* http_obj = create_http();

 // We better delete our object or else it is memory leak

 delete http_obj;}

std::unique_ptr

// Let us partially fix our code

std::unique_ptr<http> create_http() {

 socket s;

 std::unique_ptr<http> http_obj = std::make_unique<http>(&s);

 return http_obj;

}

int main(void) {

 std::unique_ptr<http> http_obj = create_http();

 // No need to worry about deleting our allocated resource

 //delete http_obj}

std::shared_ptr

// Interface for an internet socket API

class socket_i {

public:

 virtual void send() = 0;

 virtual void recv() = 0;

 virtual ~socket_i() {}

};

// Child class that implements an interface

class socket : public socket_i {

public:

 void send() override {

 }

 void recv() override {

 }

};

// An HTTP library that uses a socket interface to communicate

class http {

public:

 http(std::shared_ptr<socket_i> sock) : m_socket(sock) {

 }

private:

 std::shared_ptr<socket_i> m_socket;

};

 Cleaned up code

#include <iostream>

#include <memory>

// Interface for an internet socket API

class socket_i {

public:

 virtual bool open(const std::string& hostname) = 0;

 virtual void send(const std::string& data_to_transit) = 0;

 virtual std::string recv() = 0;

 virtual ~socket_i() {}

};

// An HTTP library that uses a socket interface to communicate

class http {

public:

 http(std::shared_ptr<socket_i> sock) : m_socket(sock) {

 }

 ~http() {

 std::cout << "Destructor of http class has been called" << std::endl;

 }

 void send_request(const std::string& host, const std::string& resource) {

 std::string request = "GET " + resource + " HTTP/1.1\r\n";

 request += "Host: " + host + "\r\n";

 request += "Connection: close\r\n\r\n";

 m_socket->send(request);

 std::string response = m_socket->recv();

 std::cout << "Response:\n" << response << std::endl;

 }

private:

 std::shared_ptr<socket_i> m_socket;

};

class linux_socket : public socket_i {

public:

 bool open(const std::string& hostname) override {

 return false;

 }

 void send(const std::string& data_to_transit) override {

 }

 std::string recv() override {

 return std::string{};

 }

};

// Let us partially fix our code

std::unique_ptr<http> create_http() {

 auto socket = std::make_shared<linux_socket>();

 // References to the shared pointer:

 std::cout << "reference count before: " << socket.use_count() << std::endl;

 // Let us create new memory which will not go out of scope

 // even when this function exits

 // BUT:

 // We have now created memory management problem:

 // ie:

 // - Who deletes this memory?

 // - When do they do it?

 // - Can you ensure that they delete it?

 std::unique_ptr<http> http_obj = std::make_unique<http>(socket);

 std::cout << "reference count after: " << socket.use_count() << std::endl;

 return http_obj;

}

int main(void) {

 auto http_obj = create_http();

 // This uses "socket" which was created at the first line inside create_http()

 http_obj->send_request("google.com", "index.html");

 // We better delete our object or else it is memory leak

 //delete http_obj;

 std::cout << "End of main()" << std::endl;}

Revision #9

Created 10 months ago by Preet Kang

Updated 10 months ago by Preet Kang

http://www.books.socialledge.com/user/8
http://www.books.socialledge.com/user/8

