Smart Pointers

C++ 11 standard solved a major safety problem with the language: Managing memory

e Creating memory
e Deleting memory
e Managing who owns memory and how many owners are there?

Example

Problematic code

Memory becomes difficult to manage when you give the pointers or references away. Here is an example.

// Interface for an internet socket API

class socket i {

public:
virtual void send() = 0;
virtual void recv() = 0;

virtual ~socket i() {}
b
// Child class that implements an interface
class socket : public socket i {
public:
void send() override {

}

void recv() override {
}
b
// An HTTP library that uses a socket interface to communicate
class http {
public:

http(socket i *sock) : m_socket(sock) {
}
private:
socket i *m socket;
b
// Multiple problems with this code
http* create http() {
socket s;
http http obj(&s);
return http obj;
}
int main(void) {

http* http obj = create http();}

One of the problems can be simplified to this:

int* get() {
int x;
return &x;
}
void problem() {
int* pointer = get();

*pointer = 123;}

Fixed Version 1

The partially corrected version creates a new memory reference, and it leaves it up to the consumer of the
code to actually delete the object. This is just one of the issues: memory management problem. Because you
are relying on the user of the code to delete your memory, it creates traps in your code.

// Let us partially fix our code
http* create http() {
socket s;
// Let us create new memory which will not go out of scope
// even when this function exits
// BUT:

// We have now created memory management problem:

// ie:
// - Who deletes this memory?
// - When do they do it?
// - Can you ensure that they delete it?
http * http obj = new http(&s);
return http obj;
}
int main(void) {

http* http obj = create http();

// We better delete our object or else it is memory leak

delete http obj;}

Let us introduce the concept of using a unique pointer such that we do not have to worry about deleting it.
// Let us partially fix our code

std::unique ptr<http> create http() {

socket s;

std::unique ptr<http> http obj std: :make _unique<http>(&s);
return http obj;

}

int main(void) {
std::unique ptr<http> http obj = create http();
// No need to worry about deleting our allocated resource

//delete http obj}

The unique_ptr is also special because it will force you to maintain "one owner".

std::shared_ptr

If we continue in our example, we will notice that there is still a fundamental flaw which is that the socket that
was created would go out of scope, and the http class would then end up using a reference to memory that no
longer is alive (no longer in scope).

// Interface for an internet socket API

class socket i {

public:
virtual void send() = 0;
virtual void recv() = 0;

virtual ~socket i() {}
I
// Child class that implements an interface
class socket : public socket i {
public:
void send() override {

}

void recv() override {
}
b
// An HTTP library that uses a socket interface to communicate
class http {
public:
http(std::shared ptr<socket i> sock) : m socket(sock) {
}
private:
std::shared ptr<socket i> m socket;

s

Cleaned up code

#include <iostream>

#include <memory>

// Interface for an internet socket API

class socket i {

public:
virtual bool open(const std::string& hostname) = 0;
virtual void send(const std::string& data to transit) = 0;
virtual std::string recv() = 0;

virtual ~socket i() {}

// An HTTP library that uses a socket interface to communicate
class http {
public:
http(std::shared ptr<socket i> sock) : m socket(sock) {
}
~http() {
std::cout << "Destructor of http class has been called" << std::endl;
}
void send request(const std::string& host, const std::string& resource) {
std::string request = "GET " + resource + " HTTP/1.1\r\n";
request += "Host: " + host + "\r\n";
request += "Connection: close\r\n\r\n";
m_socket->send(request);
std::string response = m_socket->recv();
std::cout << "Response:\n" << response << std::endl;
}
private:
std::shared ptr<socket i> m socket;
}i
class linux_socket : public socket i {
public:
bool open(const std::string& hostname) override {
return false;
}
void send(const std::string& data to transit) override {

}

std::string recv() override {

return std::string{};

}i

// Let us partially fix our code

std::unique ptr<http> create http() {
auto socket = std::make shared<linux socket>();
// References to the shared pointer:

std::cout << "reference count before: " << socket.use count() << std::endl;

// Let us create new memory which will not go out of scope

// even when this function exits

// BUT:

// We have now created memory management problem:

// ie:

// - Who deletes this memory?

// - When do they do it?

// - Can you ensure that they delete it?

std::unique ptr<http> http obj = std::make unique<http>(socket);

std::cout << "reference count after: << socket.use count() << std::endl;
return http obj;

}

int main(void) {
auto http obj = create http();
// This uses "socket" which was created at the first line inside create http()
http obj->send request("google.com", "index.html");
// We better delete our object or else it is memory leak
//delete http obj;

std::cout << "End of main()" << std::endl;}

Revision #9
Created 10 months ago by Preet Kang
Updated 10 months ago by Preet Kang

http://www.books.socialledge.com/user/8
http://www.books.socialledge.com/user/8

